报告题目:Finite Bayesian Games and its Ex-ante Agent Transformation
摘要:In this talk, a new transformation that converts a Bayesian game to a so-called ex-ante agent game (a normal-form game) is introduced. Differently from the existing transformation proposed by R. Selten that changes a Bayesian game to an interim agent game, we prove that the new transformation preserves potentiality. In addition, there is a nonpotential Bayesian game whose ex-ante agent game is potential. We also prove that there is one-to-one correspondence between pure Bayesian Nash equilibria (BNE) of Bayesian games (if one exists) and pure Nash equilibria (NE) of the resulting exante agent games. Then, we provide a sufficient and necessary condition for a Bayesian game to have an ex-ante agent potential game. Particularly, we prove fortwo-player games, BPGs are exactly the Bayesian games having ex-ante agent potential games. Furthermore, by using the semitensor product of matrices, a potential equation for finite Bayesian games is developed. Based on the potential equation, algorithms for verifying potentiality and for searching pure BNE in finite Bayesian games are designed. Finally, the results are applied to a routing problem with incomplete information.
报告人简介:吴玉虎、教授、博士生导师、现任大连理工大学控制科学与工程学院主管科研副院长、入选辽宁省“兴辽计划”青年拔尖人才计划。2012年1月获得哈尔滨工业大学基础数学博士学位。2012年4月至2015年9月,在日本上智大学做博士后研究员,并且以合作研究员的身份参与日本丰田公司的汽车发动机控制等方面的研究。2015年10月加入大连理工大学,共主持国家级基金4项。一直从事非线性系统、随机逻辑系统的分析和优化控制理论的研究及其在发动机控制系统和无人机系统中的应用等科研工作。已在IEEE TAC、Automatica、Syst. Control Lett.、IEEE TCST、IEEE TCNS、IEEE TNNLS、IEEE TASE、IEEE TCYB、IEEE TSMCS等控制理论领域重要期刊及IEEE TVT、Appl. Therm. Eng.、Mech. Syst. Signal Pr. 等机械工程领域重要期刊发表SCI论文共70余篇,其中包括发表和接受在国际控制领两大顶级期刊IEEE Transactions on Automatic Control和Automatica共12篇(长文5篇),其他IEEE汇刊二十余篇。